Логотип

BasedCalc

Среднее арифметическое ряда чисел

Введение

Среднее арифметическое ряда чисел — это одна из основных статистических мер, используемых для определения центральной тенденции набора данных. Среднее предоставляет точку, которая может служить представлением всего ряда чисел и часто используется в анализе данных, экономике и естественных науках для нахождения усредненного значения.

Операция

Среднее арифметическое (или просто среднее) ряда чисел x1,x2,,xnx_1, x_2, \ldots, x_n вычисляется как сумма всех чисел, деленная на их количество. Формула для среднего выглядит следующим образом:

xˉ=x1+x2++xnn\bar{x} = \frac{x_1 + x_2 + \cdots + x_n}{n}

где nn — количество чисел в ряду.

Свойства

  • Согласованность: Если к каждому числу в наборе добавить одно и то же число, среднее увеличится на это число.
  • Скалярное умножение: Среднее результата умножения каждого числа на одно и то же число равно среднему оригинального набора, умноженному на это число.
  • Чувствительность к выбросам: Наличие аномально большого или маленького числа в наборе может значительно изменить среднее.

Примеры использования

Пример 1

Рассмотрим набор данных: 10, 15, 20, 25, 30. Среднее арифметическое будет:

xˉ=10+15+20+25+305=1005=20\bar{x} = \frac{10 + 15 + 20 + 25 + 30}{5} = \frac{100}{5} = 20

Пример 2

Измеренные температуры за неделю составляют: 22°C, 24°C, 21°C, 23°C, 25°C, 24°C, 23°C. Средняя температура:

xˉ=22+24+21+23+25+24+237=162723.14°C\begin{equation*} \begin{aligned} \bar{x} &= \frac{22 + 24 + 21 + 23 + 25 + 24 + 23}{7} \\ &= \frac{162}{7} \approx 23.14°C \end{aligned} \end{equation*}

Часто задаваемые вопросы (FAQ)

  • Что такое среднее арифметическое? Среднее арифметическое — это мера центральной тенденции, показывающая, каково типичное значение в наборе данных.

  • Чем среднее отличается от медианы? В то время как среднее арифметическое учитывает все значения в наборе, медиана представляет собой центральное значение в упорядоченном наборе данных.

  • Почему среднее чувствительно к выбросам? Среднее может быть сильно смещено из-за наличия слишком больших или слишком малых чисел, поскольку оно включает в расчет все элементы набора данных.

Примеры из жизни

  • Экономика: Средний доход на душу населения используется для сравнения уровня жизни в разных странах.
  • Образование: Средние баллы студентов помогают оценить их успеваемость.
  • Наука: Средние значения температур, давления и других величин часто применяются в метеорологии и климатологии.

Ссылки на литературу и ресурсы